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Abstract

This paper presents an analytical approach to the dynamic response of metallic circular plates subjected to impulsive

loads. It is based on the plate energy balance equation and assumes that the plate material behaves viscoplastically. The

proposed method permits a consideration of the influence of the different terms of the kinetic energy and the plastic

work of the plate. A yield criterion is proposed, which involves the coupled effect of the radial and circumferential

internal force resultants. By applying the normality rule, the distribution of the bending moments and membrane forces

inside the plate are computed. For model validation, its analytical predictions are compared with experimental re-

sults. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In various engineering applications, mechanical elements may be subjected to impacts of foreign objects
or to pressure pulses caused by explosions. These involve inertial effects, finite deformations and non-linear
behaviour of the materials. So far, the available analytical models concern solids of simple geometric shape,
boundary conditions and applied loads, and simplifying hypotheses of the problem are commonly used to
allow its analytical treatment. One of the structural problems widely analysed in the past has been that of a
metallic circular plate fully clamped around its outer boundary and subjected to transverse impulsive loads.
This problem has been stated in different ways, the most usual being to integrate over the plate the mo-
mentum equations obtained from a differential plate element (Guowei et al., 1999; Jones, 1989; Quanlin,
1988; Jones, 1968) or to establish energy balance equations (Perrone and Badhra, 1984; Hui and Oliveira,
1986; Woodward et al., 1989). Other workers (Shen and Jones, 1993; den Reijer, 1991) proposed plate
deformation patterns using fixed or mobile plastic hinges, applying the momentum equations to the finite
plate portions separated by hinges, and movement compatibility conditions.
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Given the complexity of the problem, it is commonly assumed that certain terms of the stated equations
are not relevant, and so plate rotatory inertia is one of the most controversial terms: some authors neglect it

Nomenclature

ds mid-plane differential length in the radial direction
Ec kinetic energy
Et
c translation kinetic energy

Er
c rotation kinetic energy

H plate thickness
I impulse
�II dimensionless impulse
Mp fully plastic bending moment per unit length
Mr radial bending moment per unit length
Mh circumferential bending moment per unit length
Np fully plastic membrane force per unit length
Nr radial membrane force per unit length
p pressure
r radial coordinate
R plate radius
t time
tfinal total time of the deformation process
u transversal displacement of the mid-plane
uo axis transversal displacement
umax
o final permanent transverse displacement

We external work
Wp plastic work
W er

p membrane force plastic work
W v

p bending plastic work
W vr

p radial bending plastic work
W vh

p circumferential bending plastic work
dur differential angle in radial direction
duh differential angle in circumferential direction
er mid-plane radial strain
�ee equivalent plastic strain
/ shape function
q plate density
.r radial curvature radius
.h circumferential curvature radius
ry elastic limit
�rr equivalent stress
h circumferential coordinate
H gyration angle on the meridian plane
vr radial curvature
vh circumferential curvature
ro, _eeo, n parameters of the Cowper–Symonds equation
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(Jones, 1968; Perrone and Badhra, 1984; Hui and Oliveira, 1986) while others take full account of this effect
(Shen and Jones, 1993; den Reijer, 1991). The influence of the membrane forces is another matter of dis-
crepancy: Jones (1968), Hui and Oliveira (1986) and Shen and Jones (1993) include this force whereas
Guowei et al. (1999) do not. No fixed criteria have been adopted for the incorporation of all these effects in
the models.

The analytical approach to the problem also requires a knowledge of the value of the internal force
resultants in each plate section. den Reijer (1991) considers that these resultants have constant values in the
plate. Woodward et al. (1989) determine the value of some of these resultants and then assume the others as
a fraction of them. More sophisticated models (Hodge, 1960; Shen and Jones, 1993) give different yielding
criteria depending on whether radial or circumferential bending moments are considered. Yet another
model (Guowei et al., 1999) considers a yield criterion involving exclusively bending moments.

The model presented here includes each of the following effects: translation and rotatory inertias,
membrane force, and the radial and circumferential bending moments. A yield criterion involving radial
membrane force, radial bending moment and circumferential bending moment is also proposed, the nor-
mality rule permitting a calculation of these forces during the process of deformation.

2. Analytical model

Consider a metallic circular plate with uniform conditions around its outer boundary and subjected to
impulsive transverse forces acting on one of its faces (see, for instance, Fig. 1). The basic energy balance
equation of the problem may be written as

_WWe ¼ _EEc þ _WWp ð1Þ

where _WeWe, _EcEc and _WpWp are respectively the rates of the external load work, kinetic energy, and energy dis-
sipation by plastic deformation. All these terms may be obtained from the displacement field at mid-plane
points of the plate. This field can be described in modal form as the product of a function of time uo,
representing the transverse displacement of the plate centre, and a shape function / of the radial distance r
of the considered point. The assumed displacement field should satisfy the plate boundary conditions, so
the displacement at any point on the mid-plane of the plate is given by

u ¼ uoðtÞ/ðrÞ ð2Þ

Only transverse displacement at the mid-plane points are considered, following Griffith and Vanzant
(1961), who observed that radial displacements become negligible in comparison with transverse ones in
this type of problem.

Fig. 1. Meridian section and displacement field of the plate.
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2.1. External load work rate

Assuming that boundary reactions produce no mechanical work and that only external pressure is
applied on one of the plate faces, i.e., to model the effect of an explosion or a pressure pulse during op-
eration conditions, the work rate of the external forces becomes

_WWe ¼
Z R

0

Z 2p

0

p _uuo/rdrdh ð3Þ

where p is the external pressure, R the radius of the plate and h the circumferential coordinate. If the
pressure is assumed to be uniform, Eq. (3) reduces to

_WWe ¼ 2pp
Z R

0

_uuo/rdr ð4Þ

2.2. Kinetic energy rate

To evaluate this term, both of its components (translation and rotatory energies) are calculated sepa-
rately. The elemental plate translation kinetic energy is given by

dEt
c ¼

1

2
dm

du
dt

� �2

¼ 1

2
qHrdrdhð _uuo/Þ2 ð5Þ

where H is the plate thickness and q the material density.
The elemental plate rotatory kinetic energy may be written as

dEr
c ¼

1

2
dIh _HH

2 ¼ 1

2

qH 3

12
rdrdh

_uuo/
0

1þ u2o/
02

 !2

ð6Þ

where dIh is the moment of inertia of the considered differential element about a circumferential axis passing
through its mass centre, /0, the shape function derivative with respect to the radial coordinate r and _HH is the
angular speed about that axis which, in turn, may be calculated by differentiating with respect to time in

H ¼ arctan
ou
or

� �
¼ arctanðuo/0Þ ð7Þ

Thus the plate translation and rotatory kinetic energies can now be directly obtained by integrating dEt
c

and dEr
c over the whole plate. Then differentiating both energies with respect to time, the kinetic rate term of

Eq. (1) finally gives

_EEc ¼ _EEt
c þ _EEr

c ð8Þ

where

_EEt
c ¼ 2pqH

Z R

0

_uuo€uuo/
2rdr ð9Þ

and

_EEr
c ¼ qpH 3

Z R

0

1

6
_uuo€uuo

/02

1þ u2o/
02� �2

"
� 1

3
uo _uu3o

/04

1þ u2o/
02� �3
#
rdr ð10Þ
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2.3. Plastic work rate

Plate plastic work rate may be calculated from the following forces per unit length (Fig. 2): the radial
bending moment Mr, the circumferential bending moment Mh and the radial membrane force Nr. Plastic
work rate due to shear force can be neglected in plates with R=H > 2 (Jones, 1989), and the circumferential
membrane force may be neglected if radial displacements are small (Griffith and Vanzant, 1961). Geometric
parameters associated with those two bending moments and membrane force are: the radial curvature vr,
the circumferential curvature vh and the longitudinal radial strain at mid-plane points er. Curvature values
may be deduced from the deformed plate geometry as

vr ¼ � uo/
00

1þ u2o/
02� �3=2 ð11Þ

vh ¼ � uo/
0

r 1þ u2o/
02� �1=2 ð12Þ

At point r ¼ 0, the circumferential curvature is

vhjr¼0 ¼ �uo/
00 ð13Þ

The Cauchy strain at mid-plane points er may be written as

er ¼
ds� dr

dr
¼ 1



þ u2o/
02
�1=2

� 1 ð14Þ

where ds is the differential element length measured in the radial direction on the mid-plane. The elemental
plastic work rate due to radial membrane force d _WW er

p becomes

d _WW er
p ¼ Nr _eerrdrdh ð15Þ

so the plate plastic work rate for this force may be computed by integration of Eq. (15)

_WW er
p ¼ 2p

Z R

0

uo _uuoNr

/02

1þ u2o/
02� �1=2 rdr ð16Þ

The elemental plastic work rate corresponding to radial curvature _WW vr
p is

Fig. 2. Deformation of a differential element of the plate on the meridian plane.
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d _WW vr
p ¼ Mr

d

dt
ðdurÞrdh ¼ Mr

d

dt
ds
.r

� �
rdh ¼ Mrðvr

_ddsþ _vvr dsÞrdh ð17Þ

dur being the angle between two sections of the element and .r the curvature radius on the meridian plane
(see Fig. 2). Integrating over the whole plate yields

_WW vr
p ¼ 2p

Z R

0

Mrðvr
_ddsþ _vvr dsÞr ð18Þ

where

ds ¼ 1



þ u2o/
02
�1=2

dr ð19Þ

_dds ¼ uo _uuo
/02

1þ u2o/
02� �1=2 dr ð20Þ

_vvr ¼
3u2o _uuo/

02/00

1þ u2o/
02� �5=2 � _uuo/

00

1þ u2o/
02� �3=2 ð21Þ

As before, the elemental plastic work rate due to the circumferential curvature d _WW vh
p is given by

d _WW vh
p ¼ Mh

d

dt
ðduhÞdr ¼ Mh

d

dt
rdh
.h

� �
dr ¼ Mr _vvhrdrdh ð22Þ

where duh is the angle between two sections separated rdh on the second principal curvature plane and .h

the corresponding curvature radius. Integrating over the plate gives

_WW vh
p ¼ 2p

Z R

0

Mh _vvhrdr ð23Þ

where

_vvh ¼
u2o _uuo/

03

r 1þ u2o/
02� �3=2 � _uuo/

0

r 1þ u2o/
02� �1=2 ð24Þ

which at r ¼ 0 takes the value

_vvhjr¼0 ¼ � _uuo/
00 ð25Þ

Adding the Eqs. (16), (18) and (23), the total plastic work rate _WWp is finally obtained. So the energy
balance relationship (1) can be written finally as a differential equation only of the variable uo

f ðuo; _uuo; €uuoÞ ¼ 0 ð26Þ
This differential equation, as well as the computation of all the above-mentioned integrals can be solved

numerically.

3. Internal forces

To compute the internal force resultants, the normality rule of the plasticity theory has been used, as-
suming proportionality between the vector ð _eer; _vvr; _vvhÞ and the vector normal to the yield surface at point
ðNr;Mr;MhÞ. In our model a new yield criterion involving the three internal force resultants is proposed

664 R. Zaera et al. / International Journal of Solids and Structures 39 (2002) 659–672



Nr

Np

� �2

þ Mr

Mp

� �2

þ Mh

Mp

� �2

�MrMh

M2
p

¼ 1 ð27Þ

where Np and Mp are respectively the fully plastic membrane force and bending moment

Np ¼ ryH ð28Þ

Mp ¼ ry
H 2

4
ð29Þ

This criterion has the advantage of being continuous facilitating the implementation of the normality
rule. The corresponding yield surface Fig. 3 is convex and verifies the Drucker’s stability postulate.

To understand better the physical meaning of the criterion, the intersections of the ellipsoid with the
coordinate planes are studied. For instance, if Mh were zero the yield criterion would reduce to

Nr

Np

� �2

þ Mr

Mp

� �2

¼ 1 ð30Þ

To study the plastic behaviour of beams, Jones (1989) used the simplified stress distribution on a beam
section outlined in Fig. 4a, and applying Von Mises criterion, obtained the following relationship between
Nr and Mr

Fig. 3. Yield surface in Nr, Mr and Mh space.

Fig. 4. Distributions of radial and circumferential stresses for coupled internal force resultants Nr �MrðaÞ, Nr �MhðbÞ andMr �MhðcÞ.
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Nr

Np

� �2

þ jMrj
Mp

¼ 1 ð31Þ

A comparison between results deduced from Eqs. (30) and (31) is shown in Fig. 5. The maximum radial
difference between the two curves is less than 13%.

For other combinations of any other two internal force resultants, we propose to use the stress distri-
butions shown in Fig. 4b and c. If Von Mises criterion were used again, the following relationships would
be obtained

Nr

Np

� �2

þ jMhj
Mp

1

 
� 3N 2

r

4N 2
p

!1=2

¼ 1 ð32Þ

Mr

Mp

� �2

þ Mh

Mp

� �2

�MrMh

M2
p

¼ 1 ð33Þ

Figs. 6 and 7 compare the results deduced from Eqs. (32) and (33) and those from Eq. (27). Fig. 6 il-
lustrates how close (radial differences less than 6%) are the results provided by Eqs. (32) and (27) whereas
Fig. 7 shows the total coincidence of results obtained from Eqs. (33) and (27).

Fig. 5. Yield ellipsoid intersection with Mh ¼ 0 plane and Eq. (31).

Fig. 6. Yield ellipsoid intersection with Mr ¼ 0 plane and Eq. (32).
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In view of the above, Eq. (27) is chosen as the yield criterion for the model. Applying the normality rule
of plasticity, the following values of the internal force resultants are obtained

Nr ¼
ffiffiffi
3

p N 2
p _eer

3N 2
p _ee

2
r þ 4M2

p _vv2
r þ _vv2

h þ _vvr _vvh


 �
 �1=2 ð34Þ

Mr ¼
2
ffiffiffi
3

p

3

M2
pð2 _vvr þ _vvhÞ

3N 2
p _ee

2
r þ 4M2

p _vv2
r þ _vv2

h þ _vvr _vvh


 �
 �1=2 ð35Þ

Mh ¼
2
ffiffiffi
3

p

3

M2
pð2 _vvh þ _vvrÞ

3N 2
p _ee

2
r þ 4M2

p _vv2
r þ _vv2

h þ _vvr _vvh


 �
 �1=2 ð36Þ

4. Model validation

To validate the model, an example was analysed: a metallic circular plate clamped at its outer border,
subjected to explosive charge pressure on one of its faces. Experimental results are available for this
problem (Bodner and Symonds, 1979) which have been used to validate analytical models (Perrone and
Badhra, 1984; Shen and Jones, 1993). Bodner and Symonds (1979) used two high strain rate sensitive
materials for their experiments: hot rolled mild steel (ASTM.A415) and 99:2% purity titanium (Ti-50A).
The geometry parameters of the plates are shown in Table 1, as well as the material properties assuming
that both materials behave following the Cowper–Symonds hardening equation

�rr
ro

¼ 1þ
_�ee�ee
_eeo

 !1=n

ð37Þ

�rr and _�ee�ee being the effective stress and the effective plastic strain rate, respectively. The yield stress that
appears in Eqs. (28) and (29) was obtained from Eq. (37), assuming _eer as the effective plastic strain rate. The
shape function /ðrÞ used in the model was that proposed by Westine and Baker (1974) for fully clamped
circular plates

Fig. 7. Yield ellipsoid intersection with Nr ¼ 0 plane and Eq. (33).
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/ðrÞ ¼ 1

2
1



þ cos
pr
R

�
ð38Þ

The pressure pulse caused by the explosive charge was assumed to be triangular, as proposed by Biggs
(1964)

pðtÞ ¼ pmax 1

�
� t
tload

�
ð39Þ

where tload is the duration of the pulse and pmax the pressure at its beginning. The value of tload was 10 ls in
accordance with the duration of the pulse given by Bodner and Symonds (1979). These authors also
measured the final permanent displacement at the plate centre as a function of the applied impulse

I ¼
Z

pdt: ð40Þ

Knowing the duration of the event and the acting impulse, pmax can be obtained.
Figs. 8 and 9 show comparisons of the results from the model presented, the experimental ones, and

those deduced from the analytical models of Shen and Jones (1993) and Jones (1989), the latter incorpo-
rating the viscoplastic behaviour of the material according to the work of Perrone and Badhra (1984). Both

Table 1

Properties of the materials used by Bodner and Symonds (1979)

Dimension, property ASTM.A415 steel Ti-A titanium

R (m) 0.0318 0.0318

H (m) 0.00193 0.00234

q (kg/m3) 7850 4520

ro (MPa) 223 251

_eeo (s�1) 40 120

n 5 9

Fig. 8. Comparison of model prediction with other models and experimental results for a steel plate.

Fig. 9. Comparison of model prediction with other models and experimental results for a titanium plate.
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figures show dimensionless final permanent displacement at the centre of the plate umax
o as a function of the

dimensionless impulse given by

�II ¼ Iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qroH 2

p ð41Þ

Note that the results of the proposed model are very close to those deduced from Shen and Jones model.

5. Results and discussion

One of the main advantages of the proposed model is that it allows a separate study of the influence of
each component of the inertial and plastic work rates on the dynamic response of the plate. Different
studies of ASTM.A415 steel plate subjected to impulsive pressure were carried out. Fig. 10 shows the time
evolution of the dimensionless plastic work done by the membrane force and bending moments, as well as
the dimensionless axis displacement for a dimensionless impulse �II ¼ 0:7. Membrane force work is of the
same order of magnitude as the bending moment work when the plate axis displacement is greater than the
thickness, after which the bending plastic work is reduced to only a small fraction of the total plastic work
of the plate.

Fig. 11 shows, for a given value of R and different values of R=H , the ratio of the membrane force and
the total bending moment plastic work. For a particular value of the final plate centre displacement,
bending plastic work becomes more important as the plate thickness increases, since the fully plastic
bending moment is proportional to the square of the plate thickness (Eq. (29)), while the plastic membrane
force depends linearly on this parameter (Eq. (28)). If instead of using umax

o as the variable, the dimen-
sionless displacement were considered (Fig. 12), all the curves shown in Fig. 11 become very close. This

Fig. 10. Time dependence of the dimensionless plastic work done by the three internal force resultants and of the axis displacement

(ASTM.A415 steel, R=H ¼ 12, �II ¼ 0:7).

Fig. 11. Dependence of W er
p =W v

p ratio on final permanent transverse displacement for different R=H ratios (ASTM.A415 steel, R ¼ 30

mm, 0 < �II < 1).
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figure also shows that membrane force plastic work becomes much more important than the bending force
for umax

o greater than H.
With regard to the circumferential bending plastic work, Woodward et al. (1989) suggested that its value

is equal to that of the radial moment. Fig. 10 shows that although their works are of the same order of
magnitude, that of Mr is greater than that of Mh. Fig. 13 also illustrates this tendency, which becomes much
clearer as the final displacement and the ratio R=H are greater.

Fig. 14 shows the diagrams of the normalized membrane force and bending moments at four different
stages of the event. At the earlier stages, bending moments are more important than the membrane force,
especially near the plate axis and clamping plate perimeter where the plate curvature is greater. Around
r ¼ R=2, where the slope of the plate is greater (therefore _eer), the membrane force reaches its maximum,
increasing as the plate deformation increases, rapidly reaching its fully plastic value over almost the whole
plate. However, bending moments decrease sharply.

Fig. 14 also shows that there are plate regions where the sign of bending moments and corresponding
curvatures are different. For instance, at earlier stages of the event and at points in which the r coordinate is
slightly greater than R=2 (plate inflexion point), the radial bending moment is still positive although the
radial curvature is negative. This can be explained from vector~aa of Fig. 7. In this zone of the yield surface
the circumferential curvature reaches its maximum (bigger slope of the plate) and the radial curvature rate
is small (proximity to plate inflexion point) and negative, whereas Mr is positive. The same occurs with the
circumferential bending moment near clamping, where negative values of this moment appear, even though
the associated curvature is positive (see ~bb of Fig. 7).

Regarding the influence of the rotatory kinetic energy on the plate response, its value was 1% below the
translation kinetic energy (Fig. 15), except at the end of the deformation process, where the slope of the
shape function is greater and the translation term converges to zero more quickly than the rotatory one. So
the effect of the rotatory inertia seems to have little importance in the analysed cases.

Fig. 12. Dependence of W er
p =W v

p ratio on dimensionless final permanent transverse displacement for different R=H ratios (ASTM.A415

steel, R ¼ 30 mm, 0 < �II < 1).

Fig. 13. Dependence of W vr
p =W vh

p ratio on final permanent transverse displacement for different R=H ratios (ASTM.A415 steel, R ¼ 30

mm, 0 < �II < 1).
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6. Concluding remarks

The simplified analytical model of the problem of a metallic circular plate subjected to impulsive loads
gives results close to those obtained by experiment. It is based on an energy balance equation, and the main
effects (translation and rotatory inertia, the membrane force, and the radial and circumferential bending
moments) are included. This allows a separate study of their influence on the dynamic plate response. A
yield criterion is also proposed that considers radial membrane force, radial and circumferential bending
moments.

The model is used to simulate the effect of external pressures of different values (dimensionless impulse �II
ranging from 0 to 1) on metallic plates (steel or titanium) with different geometries (R=H from 6 to 18), and
from the results some conclusions can be drawn. The membrane force should be included in the analysis if
the expected final permanent transverse deflection is greater than the plate thickness. For smaller values of

Fig. 14. Diagrams of dimensionless internal force resultants at for instants of the impact process (ASTM.A415 Steel, R=H ¼ 12,
�II ¼ 0:7).

Fig. 15. Time dependence of Er
c=E

t
c ratio (ASTM.A415 Steel, R=H ¼ 12, �II ¼ 0:7).
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this parameter, the bending curvature seems to be much more important than the membrane strain at plate
mid-plane points. Although the circumferential bending plastic work is less than that of radial bending, it
should be incorporated into the model, especially for thick plates and large deflections. Rotatory inertia can
be neglected over the range of variables investigated, since its value is much smaller than that of translation.

This analytical model could be extended easily to other axisymetric plates, boundary conditions and
loading cases, so annular plates could be analysed with this model, simply by varying the shape function.
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